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ALL INSULATING structures are porous; they contain voids, 
commonly filled with air. In bricks, for example, the voids 
are either pockets or cells, more or less spherical in shape, 
not exceeding 5 mm dia. approximately. In other kinds of 
insulators, like glass wool, asbestos or sand-there are 
recesses between particles or granules of solids. 

The conductivity of such structures will depend upon 
the conductivities of the solid and of the pores, and partially 
upon the size, shape and distribution of the pores. 

To predict exactly the conductivity of an insulator from 
these factors is probably impossible, hut a reasonable 
approximation is however possible, and may serve, not to 
replace experimental values, but to explain them, and to 
give a conductivity values close enough to those experi- 
mentally measured. 

The Russel’s equation, which tries to predict the con- 
ductivity of porous materials, is based on the following 
assumption: The pores are cubes, all of the same size, with 
solid walls of uniform thickness, and the isothermal surfaces 
are planes By the laws of conductors, in series and in 
parallel, and simple mathematics, the conductivity of the 
(cellular) insulator is found to be given by the following 
formula [l] 
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K,,, = K,,, x ‘On’ 

~(dt-$)+l-y+f#J 
CO”, 

where 
K,,, = thermal conductivity of porous medium in W/m”K 
K - thermal conductivity of continuous phase, in CO”, - 

W/m”K 
Kdisp = thermal conductivity of dispersed phase, in 

W /m”K 

I$ = volume fraction of dispersed phase (“porosity”). 
The other case is, when the granules are solid cubes, all 

of the same size, separated by layers of air of uniform thick- 
ness. The structure is thus the reverse of the first case. This 
assumption is not very sound, as the granules in any real 

structure cannot be separated, but must touch each other. 
They will, however, touch in a limited number of points. 
For this ideal structure, the conductivity is given by the 
same type of equation, the first equation being modified 
by using the porosity Q as a volume fraction of obstacles, 
instead of a volume fraction of voids, as in the first equation. 

As it was mentioned before, the porous media, used as 
insulators, have in general two kinds of structures : 

(a) Cellular structure (like bricks, pumice, sponge, etc.) 
(b) Granular structure (like sand, asbestos, glass wool, etc.). 

The porosity Q in Russel’s equation means as follows: 

(a) at cellular structures : the porosity is a volume fraction 
of voids (mostly ffled with air) 

(b) at granular structures: the porosity is a volume 
fraction of obstacles. 

It is obvious, that when using the Russel’s equation for 
cellular structure, the thermal conductivity K,, means 
the conductivity of solid and the K,,,, means the conductivity 
of air (or another gas, or liquid). 

The situation is reversed, of course, when the calculated 
insulator has a granular structure. Thus, the continuous 
phase is air (or other gas, or liquid) and the dispersed 
phase is a solid. Therefore, the values of K,, and Kdisp 
have to be used accordingly. 

The volume fraction of dispersed phase may be calculated 
from the following formulae : 

(a) ‘i = z-p18y,j = m ceWular structure 
yolu e fraction of voids, 

(b) & = 1 _ psd - ‘r-m = volume f action of obstacles 
Psol - P@L.) f m granu ar structure 

where: psO, = density of solid component in porous struc- 
ture, in kg/ma, 

P pa = density of porous material (“bulk density”) 
in kg/m9 
P(@,~.) = density of gaseous or liquid component in 
porous structure, in kg/m3 [Z]. 
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The suitability of Russel’s equation may be best shown on 
tbe practical examples : 

Ex~p~ No. 1. Porous brick (Cellular type material). 
The thermal conducti~ty of air at 30°C = 00255 W/m”K. 
The conductivity of solid matter of brick at zero porosity, 
may he assumed as = 1.3 W/m”K. The estimated volume 
fraction of dispersed phase 4 = 0.8. 

Result. Calculated from Russel’sequation = 0.215 W/m”K. 
Measured = 0.21 W/m”K. 

Example No. 2. Wooden (pine) sawdust (Granular type 
material). Thermal conductivity of air at 20°C = 
0.023 W/m”K. Thermal conductivity of pine wood (average) 
x 0.15 Wim’K. Volume fraction of dispersed phase = 045. 

Result. Calculated = 0.07 W/m% 
Measured = 006 W/m”K 

Example No. 3. Glass wool (similar to granular type). 
Thermal conductivity of air = @0255 W/m”K. Thermal 
conductivity of glass w 0.74 W/m”K. Density of glass % 
2500 kg/m3. Density of glass wool = 200 kg/m3. Volume 
fraction of dispersed phase (calculated from densities) 
4 = 008. 

Result. Calculated thermal conductivity = 0.038 W/m”K. 
At 3o”C, measured thermal conductivity = 0,037 W!m”K. 

As it may be observed from these examples, the Russel’s 
equation works satisfactorily in a great number of cases. 

It was generally found, that for cellular materials (with 
solid, as the continuous phase) average and maximum 
prediction errors appear to he a6 and z 15 per cent [2]. 

LOCATIONS 

The Russel’s equation is based on tbe thermal conductivity 
only. The heat transfer due to convection may be neglected 
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in all cases, when the pore diameter is less than 5 mm, and 
it occurs in the majority of cases with porous insulators. 

The heat transfer due to radiation is negligible as well, 
when the pores are small, and the temperature is low. 
However, as tbe radiation rises proportionally to the fourth 
power of temperature, its values become noticeable in 
temperatures, exceeding 400°C. For example, the heat 
transfer due to radiation in air pores reaches about 30 per 
cent of its conductivity value at 400°C; at 8OO”C, the radia- 
tion beat transfer is approximately equal to tbe beat transfer 
due to the condu~tiv~~ at pores with about @3 mm dia. 
This phenomenon is even more noticeable when the pores are 
large; so that the conductivity of material with large pores 
increase with the temperature more rapidly, than for material 
with small pores [l]. 

Therefore the Russel’s equation, which gives a very good 
approximation at relatively low temperatures, gives too low 
values at bigb temperature range. 

The correction for heat transfer due to radiation is avail- 
able, but not included into the attached nomo~apb~ in 
order not to make them too complicated [3]. 

In some special cases, due to bigb permeability of porous 
material, the important role plays the vapour diffusion. 
For example, in the case of snow the diffusion mechanism 
causes a transfer of latent heat of sublimation. Therefore 
the thermal conductivity of snow may not be calculated by 
means of Russel’s equation, without use of special correction 
factors [4]. 

Other observations showed that when the porous medium 
(granular type) is a very fine powder, the results obtained 
from the equation are too low. 

Laubitz has shown, that doubling the right side of the 
equation restores its accuracy in this case [3]. 

In spite of tbe above mentioned limitations, the Russel’s 
equation may be very useful in a great number of cases. 
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THE NOMOGRAPHS (2a) The nomograph fi thermal conductivity caicuiation of 

The three attached nomographs for solving graphically porous media (Part I-Granular) 

the Russel’s equation are as follows: 

(1) The twmograph for volume fraction of dispersed phase (2b) The nomograph for thermal conductivity calculation of 
calculation porous media (Part II-CeMar) 

This nomograph is used for the calculation of the volume Both nomographs are based on the known values of 
fraction of dispersed phase (“porosity’3 of porous media thermal conductivities of continuous and dispersed phases, 
(granular and cellular types) on the basis of known densities and on the value of volume fraction of dispersed phase, 
of both components (solid and gas or liquid), as well as the obtained previously by means of the nomograph No. 1, 
density of porous material (“bulk density”). or estimated by another method. 

Nomogroph 

For the calculation of dispersed phase volume fraction ( porosity ) 

For granular and cellular porous media 
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Granular media 

For thermal conductlvlty 

calculotlon 

of porous medm 

HOW TO USE THE NOMOGRAPHS 

The nomograph fop calculation of volume fraction of dispersed 
phase 

(1) Find the intersection point of two lines of known 
values of densities p,_,, (for solids), and ps.r, (for gas or liquid) 
in the binary field ; mark this point as A. 

(2) Connect the point A with the known value of pP (bulk 
density) on the right vertical scale, using a ruler. Extend this 
line up to the intersection point with the 1eR vertical Q scale. 

The result (volume fraction of dispersed phase) has to be 
readonthe~scale:Ontheleft-handsi&ofthescale,when 
the material is cellular, and on the right-hand side, when it is 
granular. 

Typical examples 

Granular type medium What will be the porosity (i.e. 
volume fraction of obstacles) of a porous material, when the 

density of solid pSO, = 5000 kg/m3, the density of liquid 
(continuous phase) ps,r, = 1000 kg/m3, and the density 
of porous material ppar = 4000 kg/m’? 

Result-The porosity is 0.75. 
Cellulur type medium What will be the porosity (i.e. 

volume fraction of voids) of a porous material, when all the 
densities are as at the Example above, the solid being only 
continuous phase? 

Result -The porosity is 0.25. (Both these examples are 
drawn with a dotted line on the attached nomograph). 

The nomographs for thermal conductivity calculations (Part 
I--Granular) and (Part II--Cellular) 

(1) The known values of thermal conductivities K,,,, 

and &a, on the scales (1) and (2) have to be connected with 
a ruler, and this line extended up to the intersection with the 
side AB of the square (point X). 
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Cellular medlo 

For thermal conductwity 

calculation 

ofporous media 

D 

(2) From the point X draw a line, parallel to the side BC 
of the square, until it meets the curve of given 4 value. 

(3) From this point draw a line, perpendicular to the 
previous one (i.e. parallel to the ti side of the square) until 
it intersects the I%! side of the square (point Y). 

(4) Connect point Y with a ruler, with the known value 
K,, on the scale (4). The intersecting point of a ruler with 
the K, scale [No. (3)] gives us the final result (i.e. the thermal 
conductivity of porous medium). 

Typical examples 
For granular media (Nomograph marked Part--I). What 

is the thermal conductivitv of a porous (granular) material, 
when 

K EOnt = 0.2 W/m”K, K,,,, = 20 W/m”K and 4 = 05. 

Result--The thermal conductivity of porous (granular) 
material is K,, = 091 W/m”K. 

For cellular media (Nomograph marked Part--11). What is 
the thermal conductivity of porous (cellular) material when 
K cant = 5 W/m%, K,,,,,, = 0.1 W/m”K and 4 = 0.8. 

Result--The thermal conductivity of porous (cellular) 
material is K,, = 0.82 W/m%. (Both these examples are 
drawn with the dotted lines on both attached nomographs.) 
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